Multilevel models for meta-analysis

نویسندگان

  • Simon G. Thompson
  • Rebecca M. Turner
  • David E. Warn
چکیده

Meta-analysis can be considered a multilevel statistical problem, since information within studies is combined in the presence of potential heterogeneity between studies. Here a general multilevel model framework is developed for meta-analysis to combine either summary data or individual patient outcome data from each study, and to include either study or individual level covariates that might explain heterogeneity. Classical and Bayesian approaches to estimation are contrasted. These methods are applied to a meta-analysis of trials of thrombolytic therapy after myocardial infarction. Subgroups within the trials were available, categorised by the time delay until treatment, so that a three level random effects model that includes time delay as a covariate is proposed. In addition it was desired to represent the treatment effect as an absolute risk reduction, rather than the conventional odds ratio. We show how this can be achieved within a Bayesian analysis, while still recognising the binary nature of the original outcome data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multilevel model framework for meta-analysis of clinical trials with binary outcomes.

In this paper we explore the potential of multilevel models for meta-analysis of trials with binary outcomes for both summary data, such as log-odds ratios, and individual patient data. Conventional fixed effect and random effects models are put into a multilevel model framework, which provides maximum likelihood or restricted maximum likelihood estimation. To exemplify the methods, we use the ...

متن کامل

Meta analysis using multilevel models with an application to the study of class size effects

Meta analysis is formulated as a special case of a multilevel (hierarchical data) model in which the highest level is that of the study and the lowest level that of an observation on an individual respondent. Studies can be combined within a single model where the responses occur at different levels of the data hierarchy and efficient estimates are obtained. An example is given from studies of ...

متن کامل

کاربردی از مدل های رگرسیون لجستیک ترتیبی دوسطحی در تعیین عوامل موثر بر بار اقتصادی بیماری دیابت نوع دو در ایران

In recent years, multilevel regression models were intensely developed in many fields like medicine, psychology economic and the others. Such models are applicable for hierarchical data that micro levels are nested in macros. For modeling these data, when response is not normality distributed, we use generalized multilevel regression models. In this paper, at first, multilevel ordinal logist...

متن کامل

Multilevel mixed effects parametric survival models using adaptive Gauss-Hermite quadrature with application to recurrent events and IPD meta-analysis

Multilevel mixed effects survival models are used in the analysis of clustered survival data, such as repeated events, multi-centre clinical trials, and Individual Participant Data (IPD) meta-analyses, to investigate heterogeneity in baseline risk and covariate effects. In this paper we extend parametric frailty models including the exponential, Weibull, and Gompertz proportional hazards models...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001